
Accelerate your service mesh

With eBPF and Merbridge

1. Introduction

2. Why design Merbridge

3. Benefits

4. Some Approaches

5. Future plan

6. Demo

Content

Introduction

What is Merbridge

• A project uses eBPF technology to accelerate network packets processing in the service mesh

scenario

• Blog: https://istio.io/latest/blog/2022/merbridge/

How does it work?

• Shorten the data-path between data-plane’s sidecars and services, and allow packets to be

transported directly from one socket to another

• Simulate and replace what iptables does to the mesh

https://istio.io/latest/blog/2022/merbridge/
https://istio.io/latest/blog/2022/merbridge/
https://istio.io/latest/blog/2022/merbridge/
https://istio.io/latest/blog/2022/merbridge/
https://istio.io/latest/blog/2022/merbridge/

Why design Merbridge

• eBPF’s popularity and community acceptance

• A new perspective on reducing the network latency

• No open-sourced solution to be used directly yet

• Promote the development of the community with the technology accumulation from our company

Benefits

• Optimize the long-standing request latency issue

• One line Installation without modifying the mesh

• Compatibility to different mesh projects (Istio, Linkerd)

Some Approaches

How to shorten the data-path

• eBPF provides a function [bpf_msg_redirect_hash] to process policys at the socket level

 (https://man7.org/linux/man-pages/man7/bpf-helpers.7.html)

• After processing, the packet will be redirected to the destination socket referenced from the sock

map

• But how to process…

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

How to shorten the data-path

• eBPF provides a function [bpf_msg_redirect_hash] to process policys at the socket level

 (https://man7.org/linux/man-pages/man7/bpf-helpers.7.html)

• After processing, the packet will be redirected to the destination socket referenced from the sock

map

• But how to process…

Simulate what iptables does to Istio

https://istio.io/latest/blog/2022/merbridge/

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://istio.io/latest/blog/2022/merbridge/

How to find the original destination

SidecarAPP

10.96.12.4:80

127.0.0.1:15006

• Istio manipulates Iptables to forward traffic to proxy
inbound, and in this case the sidecar container will
see the the quadruple

 (source IP, source port, 127.0.0.1, 15006).

• Istio requires the destination address to determine
the service it will send requests to, but in this case
the destination information is missed.

How to find the original destination

For the iptables REDIRECT process, it will call
set_sockopt to save the ORIGINAL_DST to its socket
options in the sock map, and later called by
get_sockopt.

However, eBPF cannot do such process since it’s
dedicated to the netfilter module.

SidecarAPP

10.96.12.4:80

127.0.0.1:15006

Kernel

get_sockopt

(ORIGINAL_DST)Set_sockopt

(ORIGINAL_DST)

How to find the original destination

Intercept get_sockopt function call, and rewrite
ORIGINAL_DST with the actual original destination

SidecarAPP

10.96.12.4:80

127.0.0.1:15006

Kernel

get_sockopt

(ORIGINAL_DST)

eBPF

Resolve quadruple conflicts

Why conflicts

• When sending requests, the destination address will

be redirected to 127.0.0.1:15001

• Pods share the kernel space, but eBPF works on the

entire kernel space level

• Pods‘ local ports are independent

127.0.0.1:15001

SidecarAPP

127.0.0.1:15001

SidecarAPP

Source: 127.0.0.1:xxx

Source: 127.0.0.1:xxx

Potential solutions

• Revise Istio code to provide different policys (not

maintainable in the future)

• Patch kernel with related functions (requires high

kernel version)

Resolve quadruple confliction

In the quadruple, the source information, and the
destination port seems to be unable to change.

Destination IP is the best part to be revised.

Solution:

Replace 127.0.0.1 with dynamic IP allocation
127.128.x.x.

When a new connection is established, the IP address
will be changed as well

127.128.0.1:15001

SidecarAPP

127.128.0.2:15001

SidecarAPP

Source: 127.0.0.1:xxx

Source: 127.0.0.1:xxx

Same node acceleration

Without iptables, when to perform the redirection is the
problem. For example, the source request cannot be
redirected if the destination is on another node, or the
public network.

SidecarAPP

SidecarAPP

Same node acceleration

Thoughts:

Whether or not to do the redirection, to know all the
pods in the current node is enough. However, to avoid
redirecting to pods internal IP, we also needs to know
the current context IP.

Solution:

Add a control plane to synchronize the IP address table
of the current node that has been managed by the
service mesh.

Establish the corresponding table of process ID + IP
address through the feedback mechanism.

SidecarAPP

SidecarAPP

Future plan

• Metrics

• Cross-node mode

• IPv6 support

• Istio sidecar annotations

https://github.com/merbridge/merbridge/blob/main/ROADMAP.md

https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md
https://github.com/merbridge/merbridge/blob/main/ROADMAP.md

Demo

Thanks!

